| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904 | 
							- /**
 
-  * @license Fraction.js v4.3.7 31/08/2023
 
-  * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
 
-  *
 
-  * Copyright (c) 2023, Robert Eisele (robert@raw.org)
 
-  * Dual licensed under the MIT or GPL Version 2 licenses.
 
-  **/
 
- /**
 
-  *
 
-  * This class offers the possibility to calculate fractions.
 
-  * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
 
-  *
 
-  * Array/Object form
 
-  * [ 0 => <numerator>, 1 => <denominator> ]
 
-  * [ n => <numerator>, d => <denominator> ]
 
-  *
 
-  * Integer form
 
-  * - Single integer value
 
-  *
 
-  * Double form
 
-  * - Single double value
 
-  *
 
-  * String form
 
-  * 123.456 - a simple double
 
-  * 123/456 - a string fraction
 
-  * 123.'456' - a double with repeating decimal places
 
-  * 123.(456) - synonym
 
-  * 123.45'6' - a double with repeating last place
 
-  * 123.45(6) - synonym
 
-  *
 
-  * Example:
 
-  *
 
-  * var f = new Fraction("9.4'31'");
 
-  * f.mul([-4, 3]).div(4.9);
 
-  *
 
-  */
 
- (function(root) {
 
-   "use strict";
 
-   // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
 
-   // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
 
-   // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
 
-   var MAX_CYCLE_LEN = 2000;
 
-   // Parsed data to avoid calling "new" all the time
 
-   var P = {
 
-     "s": 1,
 
-     "n": 0,
 
-     "d": 1
 
-   };
 
-   function assign(n, s) {
 
-     if (isNaN(n = parseInt(n, 10))) {
 
-       throw InvalidParameter();
 
-     }
 
-     return n * s;
 
-   }
 
-   // Creates a new Fraction internally without the need of the bulky constructor
 
-   function newFraction(n, d) {
 
-     if (d === 0) {
 
-       throw DivisionByZero();
 
-     }
 
-     var f = Object.create(Fraction.prototype);
 
-     f["s"] = n < 0 ? -1 : 1;
 
-     n = n < 0 ? -n : n;
 
-     var a = gcd(n, d);
 
-     f["n"] = n / a;
 
-     f["d"] = d / a;
 
-     return f;
 
-   }
 
-   function factorize(num) {
 
-     var factors = {};
 
-     var n = num;
 
-     var i = 2;
 
-     var s = 4;
 
-     while (s <= n) {
 
-       while (n % i === 0) {
 
-         n/= i;
 
-         factors[i] = (factors[i] || 0) + 1;
 
-       }
 
-       s+= 1 + 2 * i++;
 
-     }
 
-     if (n !== num) {
 
-       if (n > 1)
 
-         factors[n] = (factors[n] || 0) + 1;
 
-     } else {
 
-       factors[num] = (factors[num] || 0) + 1;
 
-     }
 
-     return factors;
 
-   }
 
-   var parse = function(p1, p2) {
 
-     var n = 0, d = 1, s = 1;
 
-     var v = 0, w = 0, x = 0, y = 1, z = 1;
 
-     var A = 0, B = 1;
 
-     var C = 1, D = 1;
 
-     var N = 10000000;
 
-     var M;
 
-     if (p1 === undefined || p1 === null) {
 
-       /* void */
 
-     } else if (p2 !== undefined) {
 
-       n = p1;
 
-       d = p2;
 
-       s = n * d;
 
-       if (n % 1 !== 0 || d % 1 !== 0) {
 
-         throw NonIntegerParameter();
 
-       }
 
-     } else
 
-       switch (typeof p1) {
 
-         case "object":
 
-           {
 
-             if ("d" in p1 && "n" in p1) {
 
-               n = p1["n"];
 
-               d = p1["d"];
 
-               if ("s" in p1)
 
-                 n*= p1["s"];
 
-             } else if (0 in p1) {
 
-               n = p1[0];
 
-               if (1 in p1)
 
-                 d = p1[1];
 
-             } else {
 
-               throw InvalidParameter();
 
-             }
 
-             s = n * d;
 
-             break;
 
-           }
 
-         case "number":
 
-           {
 
-             if (p1 < 0) {
 
-               s = p1;
 
-               p1 = -p1;
 
-             }
 
-             if (p1 % 1 === 0) {
 
-               n = p1;
 
-             } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
 
-               if (p1 >= 1) {
 
-                 z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
 
-                 p1/= z;
 
-               }
 
-               // Using Farey Sequences
 
-               // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
 
-               while (B <= N && D <= N) {
 
-                 M = (A + C) / (B + D);
 
-                 if (p1 === M) {
 
-                   if (B + D <= N) {
 
-                     n = A + C;
 
-                     d = B + D;
 
-                   } else if (D > B) {
 
-                     n = C;
 
-                     d = D;
 
-                   } else {
 
-                     n = A;
 
-                     d = B;
 
-                   }
 
-                   break;
 
-                 } else {
 
-                   if (p1 > M) {
 
-                     A+= C;
 
-                     B+= D;
 
-                   } else {
 
-                     C+= A;
 
-                     D+= B;
 
-                   }
 
-                   if (B > N) {
 
-                     n = C;
 
-                     d = D;
 
-                   } else {
 
-                     n = A;
 
-                     d = B;
 
-                   }
 
-                 }
 
-               }
 
-               n*= z;
 
-             } else if (isNaN(p1) || isNaN(p2)) {
 
-               d = n = NaN;
 
-             }
 
-             break;
 
-           }
 
-         case "string":
 
-           {
 
-             B = p1.match(/\d+|./g);
 
-             if (B === null)
 
-               throw InvalidParameter();
 
-             if (B[A] === '-') {// Check for minus sign at the beginning
 
-               s = -1;
 
-               A++;
 
-             } else if (B[A] === '+') {// Check for plus sign at the beginning
 
-               A++;
 
-             }
 
-             if (B.length === A + 1) { // Check if it's just a simple number "1234"
 
-               w = assign(B[A++], s);
 
-             } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
 
-               if (B[A] !== '.') { // Handle 0.5 and .5
 
-                 v = assign(B[A++], s);
 
-               }
 
-               A++;
 
-               // Check for decimal places
 
-               if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
 
-                 w = assign(B[A], s);
 
-                 y = Math.pow(10, B[A].length);
 
-                 A++;
 
-               }
 
-               // Check for repeating places
 
-               if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
 
-                 x = assign(B[A + 1], s);
 
-                 z = Math.pow(10, B[A + 1].length) - 1;
 
-                 A+= 3;
 
-               }
 
-             } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
 
-               w = assign(B[A], s);
 
-               y = assign(B[A + 2], 1);
 
-               A+= 3;
 
-             } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
 
-               v = assign(B[A], s);
 
-               w = assign(B[A + 2], s);
 
-               y = assign(B[A + 4], 1);
 
-               A+= 5;
 
-             }
 
-             if (B.length <= A) { // Check for more tokens on the stack
 
-               d = y * z;
 
-               s = /* void */
 
-               n = x + d * v + z * w;
 
-               break;
 
-             }
 
-             /* Fall through on error */
 
-           }
 
-         default:
 
-           throw InvalidParameter();
 
-       }
 
-     if (d === 0) {
 
-       throw DivisionByZero();
 
-     }
 
-     P["s"] = s < 0 ? -1 : 1;
 
-     P["n"] = Math.abs(n);
 
-     P["d"] = Math.abs(d);
 
-   };
 
-   function modpow(b, e, m) {
 
-     var r = 1;
 
-     for (; e > 0; b = (b * b) % m, e >>= 1) {
 
-       if (e & 1) {
 
-         r = (r * b) % m;
 
-       }
 
-     }
 
-     return r;
 
-   }
 
-   function cycleLen(n, d) {
 
-     for (; d % 2 === 0;
 
-       d/= 2) {
 
-     }
 
-     for (; d % 5 === 0;
 
-       d/= 5) {
 
-     }
 
-     if (d === 1) // Catch non-cyclic numbers
 
-       return 0;
 
-     // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
 
-     // 10^(d-1) % d == 1
 
-     // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
 
-     // as we want to translate the numbers to strings.
 
-     var rem = 10 % d;
 
-     var t = 1;
 
-     for (; rem !== 1; t++) {
 
-       rem = rem * 10 % d;
 
-       if (t > MAX_CYCLE_LEN)
 
-         return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
 
-     }
 
-     return t;
 
-   }
 
-   function cycleStart(n, d, len) {
 
-     var rem1 = 1;
 
-     var rem2 = modpow(10, len, d);
 
-     for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
 
-       // Solve 10^s == 10^(s+t) (mod d)
 
-       if (rem1 === rem2)
 
-         return t;
 
-       rem1 = rem1 * 10 % d;
 
-       rem2 = rem2 * 10 % d;
 
-     }
 
-     return 0;
 
-   }
 
-   function gcd(a, b) {
 
-     if (!a)
 
-       return b;
 
-     if (!b)
 
-       return a;
 
-     while (1) {
 
-       a%= b;
 
-       if (!a)
 
-         return b;
 
-       b%= a;
 
-       if (!b)
 
-         return a;
 
-     }
 
-   };
 
-   /**
 
-    * Module constructor
 
-    *
 
-    * @constructor
 
-    * @param {number|Fraction=} a
 
-    * @param {number=} b
 
-    */
 
-   function Fraction(a, b) {
 
-     parse(a, b);
 
-     if (this instanceof Fraction) {
 
-       a = gcd(P["d"], P["n"]); // Abuse variable a
 
-       this["s"] = P["s"];
 
-       this["n"] = P["n"] / a;
 
-       this["d"] = P["d"] / a;
 
-     } else {
 
-       return newFraction(P['s'] * P['n'], P['d']);
 
-     }
 
-   }
 
-   var DivisionByZero = function() { return new Error("Division by Zero"); };
 
-   var InvalidParameter = function() { return new Error("Invalid argument"); };
 
-   var NonIntegerParameter = function() { return new Error("Parameters must be integer"); };
 
-   Fraction.prototype = {
 
-     "s": 1,
 
-     "n": 0,
 
-     "d": 1,
 
-     /**
 
-      * Calculates the absolute value
 
-      *
 
-      * Ex: new Fraction(-4).abs() => 4
 
-      **/
 
-     "abs": function() {
 
-       return newFraction(this["n"], this["d"]);
 
-     },
 
-     /**
 
-      * Inverts the sign of the current fraction
 
-      *
 
-      * Ex: new Fraction(-4).neg() => 4
 
-      **/
 
-     "neg": function() {
 
-       return newFraction(-this["s"] * this["n"], this["d"]);
 
-     },
 
-     /**
 
-      * Adds two rational numbers
 
-      *
 
-      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
 
-      **/
 
-     "add": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
 
-         this["d"] * P["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Subtracts two rational numbers
 
-      *
 
-      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
 
-      **/
 
-     "sub": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
 
-         this["d"] * P["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Multiplies two rational numbers
 
-      *
 
-      * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
 
-      **/
 
-     "mul": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * P["s"] * this["n"] * P["n"],
 
-         this["d"] * P["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Divides two rational numbers
 
-      *
 
-      * Ex: new Fraction("-17.(345)").inverse().div(3)
 
-      **/
 
-     "div": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * P["s"] * this["n"] * P["d"],
 
-         this["d"] * P["n"]
 
-       );
 
-     },
 
-     /**
 
-      * Clones the actual object
 
-      *
 
-      * Ex: new Fraction("-17.(345)").clone()
 
-      **/
 
-     "clone": function() {
 
-       return newFraction(this['s'] * this['n'], this['d']);
 
-     },
 
-     /**
 
-      * Calculates the modulo of two rational numbers - a more precise fmod
 
-      *
 
-      * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
 
-      **/
 
-     "mod": function(a, b) {
 
-       if (isNaN(this['n']) || isNaN(this['d'])) {
 
-         return new Fraction(NaN);
 
-       }
 
-       if (a === undefined) {
 
-         return newFraction(this["s"] * this["n"] % this["d"], 1);
 
-       }
 
-       parse(a, b);
 
-       if (0 === P["n"] && 0 === this["d"]) {
 
-         throw DivisionByZero();
 
-       }
 
-       /*
 
-        * First silly attempt, kinda slow
 
-        *
 
-        return that["sub"]({
 
-        "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
 
-        "d": num["d"],
 
-        "s": this["s"]
 
-        });*/
 
-       /*
 
-        * New attempt: a1 / b1 = a2 / b2 * q + r
 
-        * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
 
-        * => (b2 * a1 % a2 * b1) / (b1 * b2)
 
-        */
 
-       return newFraction(
 
-         this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
 
-         P["d"] * this["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Calculates the fractional gcd of two rational numbers
 
-      *
 
-      * Ex: new Fraction(5,8).gcd(3,7) => 1/56
 
-      */
 
-     "gcd": function(a, b) {
 
-       parse(a, b);
 
-       // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
 
-       return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
 
-     },
 
-     /**
 
-      * Calculates the fractional lcm of two rational numbers
 
-      *
 
-      * Ex: new Fraction(5,8).lcm(3,7) => 15
 
-      */
 
-     "lcm": function(a, b) {
 
-       parse(a, b);
 
-       // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
 
-       if (P["n"] === 0 && this["n"] === 0) {
 
-         return newFraction(0, 1);
 
-       }
 
-       return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
 
-     },
 
-     /**
 
-      * Calculates the ceil of a rational number
 
-      *
 
-      * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
 
-      **/
 
-     "ceil": function(places) {
 
-       places = Math.pow(10, places || 0);
 
-       if (isNaN(this["n"]) || isNaN(this["d"])) {
 
-         return new Fraction(NaN);
 
-       }
 
-       return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
 
-     },
 
-     /**
 
-      * Calculates the floor of a rational number
 
-      *
 
-      * Ex: new Fraction('4.(3)').floor() => (4 / 1)
 
-      **/
 
-     "floor": function(places) {
 
-       places = Math.pow(10, places || 0);
 
-       if (isNaN(this["n"]) || isNaN(this["d"])) {
 
-         return new Fraction(NaN);
 
-       }
 
-       return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
 
-     },
 
-     /**
 
-      * Rounds a rational numbers
 
-      *
 
-      * Ex: new Fraction('4.(3)').round() => (4 / 1)
 
-      **/
 
-     "round": function(places) {
 
-       places = Math.pow(10, places || 0);
 
-       if (isNaN(this["n"]) || isNaN(this["d"])) {
 
-         return new Fraction(NaN);
 
-       }
 
-       return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
 
-     },
 
-     /**
 
-      * Rounds a rational number to a multiple of another rational number
 
-      *
 
-      * Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8
 
-      **/
 
-     "roundTo": function(a, b) {
 
-       /*
 
-       k * x/y ≤ a/b < (k+1) * x/y
 
-       ⇔ k ≤ a/b / (x/y) < (k+1)
 
-       ⇔ k = floor(a/b * y/x)
 
-       */
 
-       parse(a, b);
 
-       return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']);
 
-     },
 
-     /**
 
-      * Gets the inverse of the fraction, means numerator and denominator are exchanged
 
-      *
 
-      * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
 
-      **/
 
-     "inverse": function() {
 
-       return newFraction(this["s"] * this["d"], this["n"]);
 
-     },
 
-     /**
 
-      * Calculates the fraction to some rational exponent, if possible
 
-      *
 
-      * Ex: new Fraction(-1,2).pow(-3) => -8
 
-      */
 
-     "pow": function(a, b) {
 
-       parse(a, b);
 
-       // Trivial case when exp is an integer
 
-       if (P['d'] === 1) {
 
-         if (P['s'] < 0) {
 
-           return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
 
-         } else {
 
-           return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
 
-         }
 
-       }
 
-       // Negative roots become complex
 
-       //     (-a/b)^(c/d) = x
 
-       // <=> (-1)^(c/d) * (a/b)^(c/d) = x
 
-       // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x         # rotate 1 by 180°
 
-       // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x       # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
 
-       // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
 
-       if (this['s'] < 0) return null;
 
-       // Now prime factor n and d
 
-       var N = factorize(this['n']);
 
-       var D = factorize(this['d']);
 
-       // Exponentiate and take root for n and d individually
 
-       var n = 1;
 
-       var d = 1;
 
-       for (var k in N) {
 
-         if (k === '1') continue;
 
-         if (k === '0') {
 
-           n = 0;
 
-           break;
 
-         }
 
-         N[k]*= P['n'];
 
-         if (N[k] % P['d'] === 0) {
 
-           N[k]/= P['d'];
 
-         } else return null;
 
-         n*= Math.pow(k, N[k]);
 
-       }
 
-       for (var k in D) {
 
-         if (k === '1') continue;
 
-         D[k]*= P['n'];
 
-         if (D[k] % P['d'] === 0) {
 
-           D[k]/= P['d'];
 
-         } else return null;
 
-         d*= Math.pow(k, D[k]);
 
-       }
 
-       if (P['s'] < 0) {
 
-         return newFraction(d, n);
 
-       }
 
-       return newFraction(n, d);
 
-     },
 
-     /**
 
-      * Check if two rational numbers are the same
 
-      *
 
-      * Ex: new Fraction(19.6).equals([98, 5]);
 
-      **/
 
-     "equals": function(a, b) {
 
-       parse(a, b);
 
-       return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
 
-     },
 
-     /**
 
-      * Check if two rational numbers are the same
 
-      *
 
-      * Ex: new Fraction(19.6).equals([98, 5]);
 
-      **/
 
-     "compare": function(a, b) {
 
-       parse(a, b);
 
-       var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
 
-       return (0 < t) - (t < 0);
 
-     },
 
-     "simplify": function(eps) {
 
-       if (isNaN(this['n']) || isNaN(this['d'])) {
 
-         return this;
 
-       }
 
-       eps = eps || 0.001;
 
-       var thisABS = this['abs']();
 
-       var cont = thisABS['toContinued']();
 
-       for (var i = 1; i < cont.length; i++) {
 
-         var s = newFraction(cont[i - 1], 1);
 
-         for (var k = i - 2; k >= 0; k--) {
 
-           s = s['inverse']()['add'](cont[k]);
 
-         }
 
-         if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
 
-           return s['mul'](this['s']);
 
-         }
 
-       }
 
-       return this;
 
-     },
 
-     /**
 
-      * Check if two rational numbers are divisible
 
-      *
 
-      * Ex: new Fraction(19.6).divisible(1.5);
 
-      */
 
-     "divisible": function(a, b) {
 
-       parse(a, b);
 
-       return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
 
-     },
 
-     /**
 
-      * Returns a decimal representation of the fraction
 
-      *
 
-      * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
 
-      **/
 
-     'valueOf': function() {
 
-       return this["s"] * this["n"] / this["d"];
 
-     },
 
-     /**
 
-      * Returns a string-fraction representation of a Fraction object
 
-      *
 
-      * Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3"
 
-      **/
 
-     'toFraction': function(excludeWhole) {
 
-       var whole, str = "";
 
-       var n = this["n"];
 
-       var d = this["d"];
 
-       if (this["s"] < 0) {
 
-         str+= '-';
 
-       }
 
-       if (d === 1) {
 
-         str+= n;
 
-       } else {
 
-         if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
 
-           str+= whole;
 
-           str+= " ";
 
-           n%= d;
 
-         }
 
-         str+= n;
 
-         str+= '/';
 
-         str+= d;
 
-       }
 
-       return str;
 
-     },
 
-     /**
 
-      * Returns a latex representation of a Fraction object
 
-      *
 
-      * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
 
-      **/
 
-     'toLatex': function(excludeWhole) {
 
-       var whole, str = "";
 
-       var n = this["n"];
 
-       var d = this["d"];
 
-       if (this["s"] < 0) {
 
-         str+= '-';
 
-       }
 
-       if (d === 1) {
 
-         str+= n;
 
-       } else {
 
-         if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
 
-           str+= whole;
 
-           n%= d;
 
-         }
 
-         str+= "\\frac{";
 
-         str+= n;
 
-         str+= '}{';
 
-         str+= d;
 
-         str+= '}';
 
-       }
 
-       return str;
 
-     },
 
-     /**
 
-      * Returns an array of continued fraction elements
 
-      *
 
-      * Ex: new Fraction("7/8").toContinued() => [0,1,7]
 
-      */
 
-     'toContinued': function() {
 
-       var t;
 
-       var a = this['n'];
 
-       var b = this['d'];
 
-       var res = [];
 
-       if (isNaN(a) || isNaN(b)) {
 
-         return res;
 
-       }
 
-       do {
 
-         res.push(Math.floor(a / b));
 
-         t = a % b;
 
-         a = b;
 
-         b = t;
 
-       } while (a !== 1);
 
-       return res;
 
-     },
 
-     /**
 
-      * Creates a string representation of a fraction with all digits
 
-      *
 
-      * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
 
-      **/
 
-     'toString': function(dec) {
 
-       var N = this["n"];
 
-       var D = this["d"];
 
-       if (isNaN(N) || isNaN(D)) {
 
-         return "NaN";
 
-       }
 
-       dec = dec || 15; // 15 = decimal places when no repetation
 
-       var cycLen = cycleLen(N, D); // Cycle length
 
-       var cycOff = cycleStart(N, D, cycLen); // Cycle start
 
-       var str = this['s'] < 0 ? "-" : "";
 
-       str+= N / D | 0;
 
-       N%= D;
 
-       N*= 10;
 
-       if (N)
 
-         str+= ".";
 
-       if (cycLen) {
 
-         for (var i = cycOff; i--;) {
 
-           str+= N / D | 0;
 
-           N%= D;
 
-           N*= 10;
 
-         }
 
-         str+= "(";
 
-         for (var i = cycLen; i--;) {
 
-           str+= N / D | 0;
 
-           N%= D;
 
-           N*= 10;
 
-         }
 
-         str+= ")";
 
-       } else {
 
-         for (var i = dec; N && i--;) {
 
-           str+= N / D | 0;
 
-           N%= D;
 
-           N*= 10;
 
-         }
 
-       }
 
-       return str;
 
-     }
 
-   };
 
-   if (typeof exports === "object") {
 
-     Object.defineProperty(exports, "__esModule", { 'value': true });
 
-     exports['default'] = Fraction;
 
-     module['exports'] = Fraction;
 
-   } else {
 
-     root['Fraction'] = Fraction;
 
-   }
 
- })(this);
 
 
  |